**Safe Harbor statement**

This presentation includes forward-looking statements within the meaning of the federal securities laws. Actual results could differ materially from such forward-looking statements. The factors that could cause actual results to differ are discussed herein and in Duke Energy’s SEC filings, available at [www.sec.gov](http://www.sec.gov).

**Regulation G disclosure**

In addition, today's discussion includes certain non-GAAP financial measures as defined under SEC Regulation G. A reconciliation of those measures to the most directly comparable GAAP measures is available in the Appendix herein and on our Investor Relations website at [www.duke-energy.com/investors/](http://www.duke-energy.com/investors/).
Duke Energy’s ESG Day – Agenda

Introduction | Bryan Buckler
Safety Moment and Performance | Paul Draovitch
Strategic Vision | Lynn Good
Clean Energy Strategy | Julie Janson and Cari Boyce
Investor Value Creation | Steve Young
Natural Gas Business | Sasha Weintraub
Renewables, Electrification and Emerging Technologies | Doug Esamann
Nuclear Generation Update | Dhiaa Jamil
Fireside Chat | Lynn Good and Bill Kennard
Q&A | All
Paul Draovitch
Senior Vice President
Environmental, Health and Safety and Project Management and Construction
Setting the bar in safety and environmental performance

Safety of our workforce, communities we serve and the environment is a core value

Leading the industry in safety performance for the 5th consecutive year (based on EEI metrics).

Total Incident Case Rate (TICR) nearly 50% lower than 2013 levels

Recordable Environmental Events reduced ~35% since 2016
Opening Remarks

Lynn Good
Chair, President and CEO
We are transforming & reshaping our entire company, from how we generate power and transform our fleet to the role we play in society.
Where we’ve been

- 6,500 megawatts of coal retired
- Added 8,000 megawatts of renewables
- 39% CO₂ reduction

Where we’re going
(2020 & beyond)

- Double renewable energy portfolio in the next 5 years
- Retire all coal-only units in the Carolinas by 2030
- At least 50% CO₂ reduction by 2030
- Net-zero Carbon by 2050

(1) From electricity generation: at least 50 percent below 2005 levels by 2030

CLEAN ENERGY INVESTMENTS ACCELERATE RATE BASE CAGR TO ~7%
EXPECT TO ACHIEVE TOP END OF 4% to 6% EPS GROWTH RATE THROUGH 2024
Fostering a culture rooted in social responsibility, strong governance and innovating for the future

**Employees**
Leading employer for diversity, women and LGBTQ community

Strong focus on development and reskilling

**Duke Energy Foundation**
Over $30 million annual investment to better our communities

Employees and retirees volunteered over 136,000 hours

**Diversity and Inclusion**
Over 400 D&I-related conversations with employees in the summer of 2020

$5 billion of spend with diverse suppliers over the past 5 years

Leadership team with 24% women and 15% minorities

**Board of Directors**
38% racial, gender and ethnic diversity represented

Ongoing refreshment with 7 new Board members in the last 4 years

Climate goal to be added to executive compensation

**Stakeholders**
Ongoing engagement in Carolinas IRPs, path ahead for solar energy and subsequent license renewal for nuclear units

**COVID-19 Response**
Swift response to pandemic, prioritizing employee safety

One of the first utilities to proactively suspend disconnections for customers

Donated ~$6.5 million to support our communities

**Our Purpose:**
Power the lives of our customers and vitality of our communities
Our commitment to address climate is integrated into everything we do – every day – as we seek to reduce our greenhouse gas emissions and mitigate climate risk. This focus will deliver value for our customers and our shareholders.

(1) From electricity generation
National leader in low carbon intensity energy

Carbon Intensity Benchmarks and Duke Energy Projections

Carbon intensity rate of combined DEC/DEP fleet is 37% lower than the industry average

Source: 2018 Benchmarking Air Emissions by MJ Bradley
Duke Energy contemplates the largest coal closure in the industry over the next decade

2019 active coal nameplate capacity and planned retirements by 2030 (GW)

---

Duke Energy contemplates the largest coal closure in the industry over the next decade. The company plans to retire 6.5 GW between 2010-2019, in addition to its planned retirements by 2030. The chart illustrates the active coal nameplate capacity and planned retirements by 2030 for various companies, including XCEL Energy, Duke Energy, and TVA. The chart highlights the retired coal capacity by jurisdiction and the percentage of coal retired by 2030.

Note: *Coal co-owned with a cooperative utility and Virginia City Hybrid Energy Center are exceptions; TVA sites potential to retire additional 2.2GW coal if cost-effective; Dominion SCE&G IRP explored additional 1.3GW retirements; DEI capacity excludes Edwardsport IGCC; Duke Carolinas retirement schedule based on “Earliest Practicable” Portfolio detailed in 2020 IRP.

Source: SNL 2019 active nameplate capacity (operating plants based on ownership % and fuel categorization, may exclude dual fuel w/ non-coal firing); planned coal retirements based on company latest IRP, utility commission reports, sustainability reports, and news releases.
Partnering with stakeholders on clean energy vision is critical.

**Collaborative Stakeholder Engagement Sessions and Focus Groups Informed the Six Portfolios Included in IRP Filing**

- Effective Format
- Partnerships
- Robust, Inclusive and Meaningful Process
- Solid Plans
- Direct Engagement
- More Confidence in Duke's Process
- Carbon Commitment
- NC Clean Energy Plan
- Knowledgeable Speakers
- Independent Facilitator
Duke Energy filed six portfolios to a cleaner energy future for the Carolinas as part of our 2020 integrated resource plan (IRP).

<table>
<thead>
<tr>
<th>Portfolios (1)</th>
<th>PORTFOLIO DESCRIPTION</th>
</tr>
</thead>
</table>
| DELIVER LOWEST COST | Portfolio 1: Base case with no CO₂ prices (Economic coal retirement dates)  
Portfolio 2: Base case with CO₂ prices (Economic coal retirement dates) |
| CLOSE COAL BY 2030 | Portfolio 3: Earliest Practicable Coal Retirement (All coal by 2030; Cliffside 6 100% gas) |
| REDUCE CO₂ BY 70% BY 2030 | Portfolio 4: High Wind (Aggressive build of carbon free energy resources: solar, batteries, on/off-shore wind)  
Portfolio 5: High SMR (Small Modular Reactors) (Aggressive build of carbon free energy resources: solar, batteries, on-shore wind, SMR) |
| NO NEW GAS GENERATION (2) | Portfolio 6: No new gas under economic coal retirement dates (3) |

1) IRP assumes generic pipeline capacity given lack of specific commercial agreement.  
2) Not equivalent to “no new gas supply;” assumes enough incremental supply to support existing gas fleet, and no new gas generation built.  
3) Retirement dates same as base case except for Roxboro 1&2 deferred 1 year.

CARBON REDUCTION IN CAROLINAS WILL RANGE FROM 56% TO 71% BY 2030
# IRP portfolio results – Carolinas combined

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Base without Carbon Policy</th>
<th>Base with Carbon Policy</th>
<th>Earliest Practicable Coal Retirements</th>
<th>70% CO₂ Reduction: High Wind</th>
<th>70% CO₂ Reduction: High SMR</th>
<th>No New Gas Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>System CO₂ Reduction (2030</td>
<td>2035)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56%</td>
<td>53%</td>
<td>59%</td>
<td>62%</td>
<td>64%</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td>Present Value Revenue Requirement (PVRR) [$B](through 2050)</td>
<td>$79.8</td>
<td>$82.5</td>
<td>$84.1</td>
<td>$100.5</td>
<td>$95.5</td>
</tr>
<tr>
<td></td>
<td>Estimated Transmission Investment Required [$B]</td>
<td>$0.9</td>
<td>$1.8</td>
<td>$1.3</td>
<td>$7.5</td>
<td>$3.1</td>
</tr>
<tr>
<td>Total Solar [MW]</td>
<td></td>
<td>8,650</td>
<td>12,300</td>
<td>12,400</td>
<td>16,250</td>
<td>16,250</td>
</tr>
<tr>
<td>Incremental Onshore Wind [MW]</td>
<td></td>
<td>0</td>
<td>750</td>
<td>1,350</td>
<td>2,850</td>
<td>2,850</td>
</tr>
<tr>
<td>Incremental Offshore Wind [MW]</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,650</td>
<td>250</td>
</tr>
<tr>
<td>Incremental SMR Capacity [MW]</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,350</td>
</tr>
<tr>
<td>Incremental Storage [MW]</td>
<td></td>
<td>1,050</td>
<td>2,200</td>
<td>2,200</td>
<td>4,400</td>
<td>4,400</td>
</tr>
<tr>
<td>Incremental Gas [MW]</td>
<td></td>
<td>9,600</td>
<td>7,350</td>
<td>9,600</td>
<td>6,400</td>
<td>6,100</td>
</tr>
<tr>
<td>Total Contribution from Energy Efficiency and Demand Response Initiatives [MW]</td>
<td></td>
<td>2,050</td>
<td>2,050</td>
<td>2,050</td>
<td>3,350</td>
<td>3,350</td>
</tr>
<tr>
<td>Dependency on Technology &amp; Policy Advancement</td>
<td>Not Dependent</td>
<td>Slightly Dependent</td>
<td>Moderately Dependent</td>
<td>Mostly Dependent</td>
<td>Completely Dependent</td>
<td>Completely Dependent</td>
</tr>
</tbody>
</table>

1) PVRRs exclude the cost of CO₂ as tax. Including CO₂ costs as tax would increase PVRRs by ~$11-$16B through 2050
2) Represents an estimated nominal transmission investment; cost is included in PVRR calculation
3) All capacities are Total/Incremental nameplate capacity within the IRP planning horizon
4) Total solar nameplate capacity includes 3,925 MW connected in DEC and DEP combined as of year-end 2020 (projected)
5) Includes 4-hr, 6-hr, and 8-hr grid-tied storage, storage at solar plus storage sites, and pumped storage
6) Contribution of EE/DR (including Integrated Volt-Var Control (IVVC) and Distribution System Demand Response (DSDR)) in 2035 to peak winter planning hour
7) Earliest Practicable retirement dates with delaying one (1) Belews Creek unit and Roxboro 1&2 to EOY 2029 for integration of offshore wind/SMR by 2030
8) Most Economic retirement dates with delaying Roxboro 1&2 to EOY 2029 for integration of offshore wind by 2030
Significantly reducing carbon in every portfolio

Pathway A
Base without carbon policy

Pathway B
Base with carbon policy

Pathway C
Earliest Practicable Coal Retirements

Pathway D
70% CO₂ Reduction: High Wind

Pathway E
70% CO₂ Reduction: High SMR

Pathway F
No New Gas
Solar + storage insufficient to meet winter peak in the Carolinas; Natural gas generation needed to supply power on cold/dark mornings.
Carolinas IRPs: generation mix by portfolio

PORTFOLIOS ILLUSTRATE PLAN TO REMOVE COAL FROM THE GENERATION MIX, UNDERPINNED BY NATURAL GAS TO MAINTAIN AFFORDABILITY AND RELIABILITY
Duke Energy Florida and Indiana executing clean energy strategy for customers

**DUKE ENERGY FLORIDA**

**Solar Base Rate Adjustment (SoBRA)**
- **$1 billion capital investment** for 700 MW solar
  - ~345 MW completed with remaining ~375MW to be completed by Q1 2022

**Storm Protection Plan (SPP)**
- Investments focused on the Florida transmission and distribution grid - **$ 6.2 billion over 10 years**
- Hardening and resiliency against storms / grid security

**Clean Energy Connection (CEC)**
- **$1 billion investment** over 3 years, 750 MW shared solar program proposed to the FPSC July 1st
- Allows customers to lower their carbon footprint by sharing in the company’s solar production on a voluntary basis

**DUKE ENERGY INDIANA**

**Progress made on fleet diversification plans…**
- **Reduced** average remaining depreciable life of coal assets by ~ 40%
- 2019 IRP provides opportunity for orderly transition of 4GW coal fleet, including ~1,250MW of renewables starting in early 2020’s

…With continued focus on stakeholder engagement for energy policy
- 21st Century Energy Policy Task Force
  - Study of Indiana’s generation resources for reliability and resiliency, fuel source transitions and emerging technologies
- DEI to file new IRP in Fall 2021
  - Continued fleet diversification
  - Coal retirement review and analysis
  - Stakeholder review process to begin Fall 2020
The Path Forward

- We have an ambitious goal to attain net-zero by 2050

- We are taking action to accelerate the clean energy transition in all our jurisdictions

- Stakeholder alignment is clear – and we have multiple paths to make progress
Investor Value Creation
Clean energy future drives infrastructure growth opportunity in Carolinas

Carolinas IRP-related infrastructure needs\(^{(1)}\) – irrespective of ownership

Carbon Reduction (% vs. 2005 level)

Infrastructure investment ($ billion)

- Avg. Base portfolio includes ~9 GW renewables / storage additions
- 55% - 65% carbon reduction
- Avg. 70% portfolio includes ~22 GW renewables / storage additions
- 70% - 75% carbon reduction

(1) Incremental distribution capital not reflected in the Carolinas IRPs

ALL CAROLINAS IRP PORTFOLIOS REQUIRE SIGNIFICANT INFRASTRUCTURE, ACCELERATING IN 2025-2029
Grid investments support fleet transformation across all jurisdictions

Grid capital plan significantly trending up in second half of the decade

- Transmission investments total ~$7B in current five-year plan. Significant incremental capital over the next decade for transmission upgrades:
  - Accommodate coal retirements
  - Enable renewables and energy storage
  - Maintain grid stability
  - Average $4 billion in Carolina’s IRP from 2020 – 2035, and will also require significant investment in Florida and Midwest

- Distribution investments total ~$17B in current five-year plan. Significant incremental distribution capital over the next decade to:
  - Improve resiliency and allow for dynamic power flows in a clean energy future
  - Enable electric vehicle charging and battery systems
  - Support innovative customer programs and rate designs
  - Install localized intelligent control systems

INVESTING IN THE LARGEST GRID IN THE U.S. TO ENABLE EXTENSIVE DEPLOYMENT OF RENEWABLES
Clean energy transition drives significant growth

Growing 5-year capex profile…

...leads to higher earnings base growth…

...with ability to mitigate customer rate impacts…

- Fuel savings
- Lower O&M than coal plants
- Efficiencies from technology/digital
- Strong customer growth

...results in positive customer and community outcomes

- Significant carbon reductions
- Accelerated coal retirements
- Job creation & community investment
- Affordable rates

EXPECT EARNINGS BASE GROWTH TO INCREASE TO ~7% IN SECOND HALF OF THE DECADE
Sasha Weintraub
Senior Vice President and Chief Commercial Officer of Natural Gas

Natural Gas Business
Driving methane emissions to net-zero

Duke Energy to reduce methane emissions to net-zero by 2030

Eliminated all cast iron and bare steel mains within our delivery systems

Approach to achieving net-zero methane emissions in natural gas business

- New technologies to improve monitoring and measuring of methane emissions
- Operational improvements and new technologies in our natural gas local distribution companies and reducing third-party damages to our infrastructure
- Renewable natural gas to mitigate any remaining methane emissions

Enterprise actions contributing to upstream efforts to reduce methane emissions

- Work with the industry as a member of ONE Future to achieve an even greater impact across the natural gas supply chain
- Assist in ONE Future’s goal to lower methane emissions to <1% by 2025 nationwide
- Drive Duke Energy’s procurement process towards suppliers with low methane emissions
Our LDCs continue to serve customers and support economic development with reliable infrastructure

Moving forward with advanced and sustainable RNG technologies to provide benefits for customers

- Renewable natural gas projects
- SustainRNG investment
- RNG in compressed natural gas stations
- Compressed natural gas for medium-duty vehicles
Piedmont acquisition has been a tremendous success

**SIGNIFICANT GROWTH IN RATE BASE AND CUSTOMER SATISFACTION...**

- **Rate Base ($B)**
  - 2016: $3.2
  - 2020E: $5.7
  - 15% CAGR

- **Customer Satisfaction Scores**
  - 2016: 727
  - 2020: 772
  - 45 pt increase

**... WHILE CUSTOMER RATES AND EMISSIONS TREND DOWN**

- **Avg Customer Rate**
  - 2016: $1.23
  - 2019: $1.16
  - ~2% reduction

- **Methane Emissions**
  - 2016
  - Targeting zero emissions

**EXPECTED FIVE-YEAR EPS CAGR OF 8-10% IN THE NATURAL GAS SEGMENT**
Renewables, Electrification and Energy Solutions

Doug Esamann
Executive Vice President Energy Solutions, President Midwest/Florida Regions, President Natural Gas Business
Significant renewable energy investments delivering cleaner energy

Renewables will be Duke Energy’s largest source of energy by 2050
Projected to add upwards of 40,000 MWs of new renewables, making up 40% of our generation mix

Regulated and non-regulated renewable capacity\(^{(1)}\):

<table>
<thead>
<tr>
<th>Year</th>
<th>Capacity (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>8</td>
</tr>
<tr>
<td>2025E</td>
<td>16</td>
</tr>
</tbody>
</table>

Commercial Renewables projects under construction:

- **Frontier II Wind power** – 350 MW (online by end of 2020)
- **Maryneal Wind power** – 180 MW (online by Q1 2021)

Regulated Renewables:

- **DEF Clean Energy Connection program** to add approx. 750 megawatts (MW) of cost-effective solar for residential/ small customers.
- **Carolinas** – Renewables investments included in recently-filed IRPs to support growth of green energy

\(^{(1)}\) Includes renewables owned, operated and under contract
Leveraging energy storage as we move into next decade

1973
First pumped storage hydro station at Lake Jocassee (780 MW)

2011
First battery storage research project installed at Rankin Substation (400 kW)

2012
First commercial battery installed at Notrees Windpower project (36 MW)

2015
Mt. Holly Microgrid Test Facility commissioned (250 kW)

2016
McAlpine Microgrid successfully tested and validated (200 kW)

2017
First regulated utility battery installed at Mt. Sterling (95 kWh)

2020
Battery at Camp Atterbury dispatched by MISO (5 MW)

2021
Utility-scale batteries to be installed in Florida (50 MW)

2023
Bad Creek Pumped Storage Hydro Station to be uprated (+320 MW)
Electrifying our fleet and supporting electrification of our communities

**Aggressive pledge to electrify vehicle fleet by 2030**
Duke Energy will convert 100% of its 4,000 light-duty vehicles to electric, and 50% of its combined fleet of 6,000 medium, heavy-duty and off-road vehicles to plug-in hybrids or zero carbon alternatives.

**U.S. share of total annual passenger vehicle sales by drivetrain**


- **DEF Park & Plug**  
  Approved and being implemented
- **SC ET Pilot**  
  Approved
- **OH ET Pilot**  
  Filed
- **NC ET Pilot**  
  Filed, pending
- **Charge Florida**  
  EV charging study  
  200 residential customers
Emerging hydrogen economy introduces a variety of growth opportunities

Current hydrogen research project
- Duke Energy, Siemens and Clemson University filed joint research proposal to DOE
- Pilot project to advance understanding of how hydrogen can serve as an energy storage and low-carbon fuel
- If approved, the project would include design studies for the production, storage and co-firing of hydrogen at Combined Heat and Power (CHP) located at Clemson’s campus

2019 Bloom fuel cell portfolio acquisition
- Duke-acquired portfolio created a close relationship to understand Bloom’s hydrogen fuel cell design as it is developed


DUKE ENERGY IS UNIQUELY POSITIONED WITH MULTIPLE CARBON-FREE GENERATION SOURCES TO PRODUCE HYDROGEN – NUCLEAR, HYDRO, SOLAR, WIND
Exploring new technology to propel Duke Energy into the future

Investing in emerging technology, research and development to propel Duke Energy to reach net-zero carbon by 2050

Zero emitting load following resource (ZELFR) technologies are needed to be ready for commercial deployment by the mid-2030s.

- advanced nuclear
- long duration energy storage technologies
- hydrogen
- carbon capture utilization and storage
- other low carbon energy carriers

Low Carbon Resources Initiative with EPRI to focus on the innovation, research and development needed to reach net zero carbon emissions by 2050.
Nuclear Generation Update
Duke is an industry leader in carbon-free generation

The Carolinas’ utilities rank second among large, regulated utilities with 53% of generation from carbon-free resources\(^{(1)}\), driven by…

- Best in class nuclear fleet
- North Carolina ranked 2\(^{nd}\) in the nation for solar development

Duke is less “coal-heavy” than other utilities and has done more to reduce its carbon footprint\(^{(2)}\)

\(^{(1)}\) Based on 2019 owned generation \((\text{Mw})\). Carbon-free generation includes nuclear, solar, hydro and biomass. Excludes purchased power.

\(^{(2)}\) Source: SNL. Generation metrics include owned and purchased power. AEE and FE data reflects 2018 generation data given lack of disclosure.
Duke Energy investing in the future of nuclear

**Early 2020s**
- Subsequent license renewal (SLR)
  - 11 generating units in Carolinas
  - Nearly 11 gigawatts carbon-free generation
  - Filing for additional 20 years per unit

**Late 2020s**
- Small modular reactors (SMR)
  - Small modular reactors (SMR) for baseload generation
  - Produce up to 300 megawatts with early designs
  - Complement renewables and battery storage investments

**2030s**
- Advanced non-light-water reactors
  - Zero-emitting, load-following resources (ZELFRS)
  - Engaging in additional research and development and advocacy
  - Include several reactor types
  - Complement growing renewables and energy storage portfolio
Key messages of ESG Investor Day

Clean energy vision centers around ambitious goals to achieve net-zero carbon emissions by 2050\(^{(1)}\) and net-zero methane emissions by 2030.

Duke Energy is a leader in carbon-free generation.

Our path is underpinned by world-class governance and strong commitment to social responsibility.

Investment opportunities result in earnings base CAGR of ~7\%, leading to higher EPS growth potential.

\(^{(1)}\) From electricity generation
Appendix
We operate premium franchises poised to benefit from ESG transition

Scale owner of premium utilities
- Duke Energy is the largest regulated utility in North America by:
  - Rate base, electric customers and total assets
- We operate premium utilities in 7 states across the country, benefiting from diversification and strong regional growth trends

Low-risk, regulated business
- 95% of earnings from regulated entities
- Premium regulated electric and gas franchises

Strong regulated growth outlook
- $56Bn 5-year capital plan
  - De-risked, focused on smaller scale projects
- Utilities rate base growth rate of 6%
- Strong customer and load growth fundamentals

Our purpose: Power the lives of our customers and vitality of our communities
Ethics and compliance

Duke Energy's Ethics and Compliance Program promotes an organizational culture that encourages ethical conduct, a commitment to compliance with laws and regulatory requirements and a culture that supports reporting allegations without the fear of retaliation.

Elements

- Overseen by the Audit Committee of the Board with management governance through an Executive Steering Committee
- The Chief Ethics and Compliance Officer reports to the Chief Legal Officer
- Annual enterprise compliance risk assessments to inform and foster continuous improvement
- Employee expectations set by the Code of Business Ethics and supported by specific policies and procedures
- Separate Codes for the Board of Directors and Suppliers to direct the specific requirements of board services and the activities of suppliers and contingent workers, respectively
- Regular worker training modules based on their specific roles and responsibilities
- Anonymous reporting hotline with independent investigations of all allegations

The Program’s effectiveness was assessed by Ethisphere, a leader in defining and advancing ethics and compliance business practices, resulting in Duke Energy being awarded Ethisphere Compliance Leader Verification for 2019 and 2020.
Long-standing history of strong governance driven from diverse Board of Directors

Board of Directors

**Lynn J. Good**  
Chair, President & CEO,  
Duke Energy  
Director since: 2013

**Michael G. Browning**  
Independent Lead Director  
Chairman, Browning Consolidated  
Director Since: 2006

**Annette K. Clayton**  
President & CEO, North America Operations, Schneider Electric  
Director since: 2019

**Theodore F. Craver Jr.**  
Retired Chairman, President, & CEO, Edison International  
Director since: 2017

**Robert M. Davis**  
EVP, Global Services & CFO,  
Merck & Co.  
Director since: 2018

**Daniel R. DiMicco**  
Chairman Emeritus, Retired  
President & CEO, Nucor  
Director since: 2007

**Nicholas C. Fanandakis**  
Retired EVP,  
DuPont de Nemours  
Director since: 2019

**John T. Herron**  
Retired President, CEO & Chief Nuclear Officer, Entergy Nuclear  
Director since: 2013

**William E. Kennard**  
Co-Founder and Non-Executive Chairman, Velocitas Partners  
Director since: 2014

**E. Marie McKee**  
Retired SVP, Corning  
Director since: 2012

**Marya M. Rose**  
CAO, Cummins  
Director since: 2019

**Thomas E. Skains**  
Retired Chairman, President & CEO, Piedmont Natural Gas  
Director since: 2016

**William E. Webster**  
Retired EVP, Institute of Nuclear Power Operations  
Director since: 2016

---

**Key Stats**

38%  
Racial, Gender and Ethnic Diversity

5.2  
Years Average Tenure

**Key Skills & Experience**

| Risk Management | 13 |
| Regulatory / Government | 11 |
| Customer Service | 10 |
| Environmental | 9 |
| Cybersecurity / Technology | 7 |
| Industry | 6 |
| Human Capital Management | 4 |
| Legal | 4 |
## Risk Management oversight structure

### Key Highlights

<table>
<thead>
<tr>
<th>Sustainability &amp; Political</th>
<th>Key Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Governance Committee Responsibility</td>
<td></td>
</tr>
<tr>
<td>▪ Announced a new, aggressive goal of at least 50% reductions in carbon dioxide emissions from electricity generation by 2030 (from 2005 levels) and net-zero carbon dioxide emissions from electricity generation by 2050</td>
<td></td>
</tr>
<tr>
<td>▪ Oversaw the publication of our second comprehensive climate report to shareholders in April 2020</td>
<td></td>
</tr>
<tr>
<td>▪ Increased the level of disclosure in 2019 in our semi-annual political expenditures report to include disclosure of all political contributions and all trade association to whom the company paid dues of more than $50,000 during the period of that report and the portion of those dues attributable to lobbying</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Capital Management</th>
<th>Key Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compensation Committee</td>
<td></td>
</tr>
<tr>
<td>▪ Compensation committee receives updates on employee engagement surveys and action plans</td>
<td></td>
</tr>
<tr>
<td>▪ Board members meet with both management and employees below senior management on a regular basis, including interactions at Board dinners and tours of our facilities</td>
<td></td>
</tr>
<tr>
<td>▪ Receives regular updates on diversity and inclusion targets, initiatives, and progress</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cybersecurity &amp; Technology</th>
<th>Key Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Committee Responsibility</td>
<td></td>
</tr>
<tr>
<td>▪ Receives updates on Cybersecurity and grid security issues and compliance with regulations at every regularly scheduled Audit Committee meeting</td>
<td></td>
</tr>
<tr>
<td>▪ Participated in a training session on personal cyber hygiene in 2019</td>
<td></td>
</tr>
<tr>
<td>▪ New Directors participated in a cybersecurity orientation which included a tour of Duke Energy’s Cybersecurity Operations Center in 2019</td>
<td></td>
</tr>
</tbody>
</table>
Executive compensation program aligned with business strategy

Performance Metrics Support Key Goals

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>METRICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT-TERM INCENTIVE (STI)</td>
<td><strong>Annual Cash Incentive</strong></td>
</tr>
<tr>
<td></td>
<td>Corporate Objectives (80%)</td>
</tr>
<tr>
<td></td>
<td>- 50% Adjusted EPS</td>
</tr>
<tr>
<td></td>
<td>- 10% O&amp;M Expense</td>
</tr>
<tr>
<td></td>
<td>- 10% Operational Excellence - Targets set on an absolute basis for reliability and safety / environmental goals (see next slide)</td>
</tr>
<tr>
<td></td>
<td>- 10% Customer Satisfaction</td>
</tr>
<tr>
<td></td>
<td>Individual Objectives (20%)</td>
</tr>
<tr>
<td></td>
<td>- The STI Plan contains a safety adder/penalty that adjusts the payout 5% upwards or downwards depending on whether there is a significant operational event</td>
</tr>
</tbody>
</table>

| LONG-TERM INCENTIVE (LTI)    | **70% Performance Shares**                                             |
|                              | **30% Restricted Stock Units (RSUs)**                                  |
|                              | - 50% Cumulative Adj. EPS                                              |
|                              | - 25% Relative TSR                                                     |
|                              | - 25% Safety (targets set on a relative basis)                         |
|                              | - Service-based (3-year pro-rata vesting)                             |

Safety and Environmental metrics appear in both our STI and LTI incentives programs given the importance of these measures to Duke Energy and our shareholders.

Target Compensation Mix

- **CEO**
  - Short-Term Incentives (Cash), 16%
  - Base Salary, 10%
  - Performance Shares, 52%

- **90% Performance and/or Stock-Based**

- **OTHER NEOS**
  - Short-Term Incentives (Cash), 20%
  - Base Salary, 22%
  - Performance Shares, 41%

- **78% Performance and/or Stock-Based**
## Performance metrics aligned to our ESG strategy

| Carbon Reduction | In September 2019 we announced a new aggressive goal of at least 50% reduction in carbon emissions from electricity generation by 2030 compared to 2005 levels and net-zero carbon emissions from electricity generation by 2050. To promote clean energy initiatives, we incorporate a **nuclear reliability** objective and a **renewable availability** metric in our STI plan to measure the efficiency of our nuclear and renewable generation assets. |
| Environmental Events | To enhance our commitment to the environment, we incorporate a **reportable environmental events** metric into our STI plan. In 2019, we outperformed our target for **reportable environmental events** and reached an agreement with the NC DEQ and community groups to permanently close all remaining ash basins in North Carolina with the substantial majority of the ash being excavated and placed in lined landfills. |
| Safety | Safety remains our top priority. As an indication of our commitment to safety, we include safety metrics in both the STI and LTI plans based on the **TICR** for employees, which measures the number of occupational injuries and illnesses per 100 workers to emphasize our focus on an event-free and injury-free workplace. In addition, the STI Plan is subject to an additional adder and/or penalty that adjusts payments by 5% upward or downward based on performance relative to safety. |
| Customers | We continue to prioritize the customer experience. To drive these results, we incorporate **customer satisfaction** metric in the STI plan which is a composite of customer satisfaction survey results for each area of our business. Our desire to satisfy our customers provides an additional incentive to generate clean energy. |
| Strong Governance | We continue to incorporate sound governance principles and policies into our compensation program, which reinforce our pay for performance philosophy and strengthen the alignment of interests of our executives and shareholders. |
# Duke Energy’s scores on ESG ratings and rankings

<table>
<thead>
<tr>
<th>Source</th>
<th>Scale</th>
<th>Early 2019</th>
<th>2020</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSCI</td>
<td>Letter grade and 0-10 (best) score</td>
<td>BBB 5.2</td>
<td>A 6.7</td>
<td>Aug. 2020 upgrade from BBB</td>
</tr>
<tr>
<td>Sustainalytics ESG Risk Rating</td>
<td>0 (best)-100 and rank (1=best)</td>
<td>33.3 risk rating (45 out of 180 in global electric sector)</td>
<td>33.2 risk rating</td>
<td>51 out of 180 in global electric sector</td>
</tr>
<tr>
<td>Bloomberg ESG Disclosure Score</td>
<td>0-100 (best)</td>
<td>56.6 (second best in U.S. utility sector)</td>
<td>57.4</td>
<td>Third best in U.S. utility sector</td>
</tr>
<tr>
<td>ISS Quality Scores</td>
<td>1 (best)-10</td>
<td>3 4 1</td>
<td>2 3 1</td>
<td>All ratings at best or second best level</td>
</tr>
</tbody>
</table>
Generation Fleet: Road to net-zero – foundation to climate strategy

2005 – 2020
> 39% CO₂ reduction as of 2019
> Nuclear delivers 86% of carbon-free generation
> 51 coal unit retirements

2020 – 2030
> Accelerate retirement of coal and add flexibility to existing assets
> Significantly increase renewables
> Extend nuclear licenses for 11 units in fleet
> Invest in research and development and engage in new technical developments
> New natural gas to accelerate to cleaner energy
> Prepare energy grid for more distributed energy resources

2030 – 2040
> Retire all coal across fleet
> Expand renewable capabilities (wind, batteries and pumped storage)
> Introduce new technologies
> Continue investing in research and development

2040 – 2050
> Sunset legacy assets
> Scale new technology

39% CO₂ reduction as of 2019
Nuclear delivers 86% of carbon-free generation
51 coal unit retirements
Accelerate retirement of coal and add flexibility to existing assets
Significantly increase renewables
Extend nuclear licenses for 11 units in fleet
Invest in research and development and engage in new technical developments
New natural gas to accelerate to cleaner energy
Prepare energy grid for more distributed energy resources
Retire all coal across fleet
Expand renewable capabilities (wind, batteries and pumped storage)
Introduce new technologies
Continue investing in research and development
Sunset legacy assets
Scale new technology
Coal as a percentage of earnings base

Coal assets as a percentage of Electric & Gas earnings base

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Coal Earnings Base</th>
<th>Excluding Dual Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019A</td>
<td>14%</td>
<td>~9%</td>
</tr>
<tr>
<td>2024E</td>
<td>7%</td>
<td>~4%</td>
</tr>
<tr>
<td>2029E</td>
<td>2-3%</td>
<td>~1%</td>
</tr>
</tbody>
</table>

(1) Does not reflect accelerated depreciation requested in North Carolina rate cases

Coal assets as a percentage of earnings base reduced by half over the 5-year plan and to near-zero by 2029
Collaborating with stakeholders to develop sound energy policy

Build stronger relationships with stakeholders at the center of the federal climate and technology debate

Active involvement with stakeholders involved in the NC Clean Energy Plan process

Achieved constructive outcomes and delivered value for stakeholders during solar energy discussions as part of the SC Energy Freedom Act

Continue to cultivate relationships and engage stakeholders to support successful completion of solar and battery storage projects that expand company-owned renewable capacity

Support positive policy and stakeholder outcomes related to Indiana’s cleaner energy future

Collaborate with stakeholders – including customers – to build understanding and support for natural gas projects and energy grid investments
## 2019 vs. 2020 Carolinas IRPs: What’s changed?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
<td>48%</td>
<td>59%</td>
<td>62%</td>
<td>70%</td>
</tr>
<tr>
<td>Total Solar [MW]</td>
<td>8,400</td>
<td></td>
<td>8,650</td>
<td></td>
<td>16,250</td>
</tr>
<tr>
<td>Incremental Onshore Wind [MW]</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>2,850</td>
</tr>
<tr>
<td>Incremental Offshore Wind [MW]</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>2,650</td>
</tr>
<tr>
<td>Incremental SMR Capacity [MW]</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Incremental Storage [MW]</td>
<td>550</td>
<td>1,050</td>
<td></td>
<td></td>
<td>4,400</td>
</tr>
<tr>
<td>Incremental Gas [MW]</td>
<td>11,550</td>
<td>9,600</td>
<td></td>
<td></td>
<td>6,400</td>
</tr>
<tr>
<td>Coal Retirements [MW]</td>
<td>2,000 MW</td>
<td>6,000 MW</td>
<td>5,000 MW</td>
<td>7,000 MW</td>
<td>10,000 MW</td>
</tr>
</tbody>
</table>

Earliest practicable portfolio contemplates dual fuel unit Cliffside 6 operates on natural gas only starting in 2030. Most economic retirement dates with delaying Roxboro 1 & 2 to EOY 2029 for integration of offshore wind by 2030.

### Significant incremental renewable resources and increased coal retirements proposed in Carolinas IRP

- **Total Solar**: Increased from 8,400 MW to 8,650 MW to 16,250 MW in 2020 IRP with and without carbon policy, and further to 16,400 MW in 2020 IRP without new gas.
- **Onshore Wind**: Incremental capacity increased from 0 MW to 2,850 MW to 2,650 MW in 2020 IRP with and without carbon policy, and to 3,150 MW in 2020 IRP without new gas.
- **Offshore Wind**: Incremental capacity increased from 0 MW to 2,650 MW to 2,650 MW in 2020 IRP with and without carbon policy, and to 700 MW in 2020 IRP without new gas.
- **SMR Capacity**: Incremental capacity increased from 0 MW to 700 MW in 2020 IRP without new gas.
- **Storage**: Incremental capacity increased from 550 MW to 1,050 MW to 4,400 MW in 2020 IRP with and without carbon policy, and to 7,400 MW in 2020 IRP without new gas.
- **Gas**: Incremental capacity decreased from 11,550 MW to 9,600 MW to 0 MW in 2020 IRP with and without carbon policy, and to 5,000 MW to 7,000 MW in 2020 IRP without new gas.
- **Coal Retirements**: Retirements increased from 2,000 MW to 6,000 MW to 5,000 MW to 7,000 MW to 10,000 MW to 10,000 MW to 5,000 MW to 7,000 MW in 2020 IRP with and without carbon policy, and to 5,000 MW to 7,000 MW in 2020 IRP without new gas.
Developing integrated resource plans in collaboration with stakeholders

<table>
<thead>
<tr>
<th>Stakeholder Interest</th>
<th>How Addressed in IRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity in carbon portfolios, with specific interest in NC CRP portfolios and relationship to climate goals</td>
<td>▪ Portfolios will reflect multiple potential pathways to achieving Duke Energy’s net-zero carbon goals including two 70% CO₂ reduction by 2030 portfolios and a no new gas portfolio</td>
</tr>
</tbody>
</table>
| Earlier insight on data inputs & assumptions                                          | ▪ Expediting access to support technical data  
 ▪ Accelerating technical review prior to filing                                                                                                           |
| Consideration of additional data inputs                                               | ▪ Using other sources like EIA’s 2020 Annual Energy Outlook  
 ▪ Assuming lower capital costs for solar and storage                                                                                                   |
| Inclusion of more renewable/storage technologies                                       | ▪ Portfolios consider wide range of options: solar, solar plus storage, stand-alone battery storage, hydro-pumped storage as well as both onshore and offshore wind |
| Utilization of EnCompass IRP Planning Model                                            | ▪ Transitioning to EnCompass model in 2021 given delays in required training and implementation due to COVID response                                                                                                           |
| Support for competitive solicitations                                                 | ▪ Results of NC CPRE solicitations included in the IRP  
 ▪ Recognition of wholesale market solutions for RFPS as part of the CPCN processes                                                                                                                              |
| Role of Expanded transmission                                                         | ▪ Transmission Planning Collaboration is studying the opportunities to access offshore wind  
 ▪ ISOP development effort will also evaluate                                                                                                                                                                      |
| Winter Peaking DSM Programs                                                            | ▪ Engaged industry experts to preform a new study to identify potential winter peak shaving opportunities                                                                                                           |
Carolinas coal retirements by IRP portfolio

All portfolios retiring coal-only units by 2030; Most Economic portfolios continue to run dual fuel needed for peak capacity

(1) In Earliest Practicable portfolio, starting in 2030, dual fuel unit Cliffside 6 operates on natural gas only
## Carolinas IRP capacity additions (MW)

<table>
<thead>
<tr>
<th></th>
<th>Base without Carbon Policy</th>
<th>Base with Carbon Policy</th>
<th>Earliest Practicable Coal Retirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2021-2025 2026-2030 2031-2035 Total</td>
<td>2021-2025 2026-2030 2031-2035 Total</td>
<td>2021-2025 2026-2030 2031-2035 Total</td>
</tr>
<tr>
<td>Incremental Solar(^{(1)})</td>
<td>3,000 1,710 15 4,725</td>
<td>3,150 2,600 2,625 8,375</td>
<td>3,150 2,690 2,635 8,475</td>
</tr>
<tr>
<td>Onshore Wind</td>
<td>- - - - -</td>
<td>- - 750 750</td>
<td>- 600 750 1,350</td>
</tr>
<tr>
<td>Offshore Wind</td>
<td>- - - - -</td>
<td>- - - - -</td>
<td>- - - - -</td>
</tr>
<tr>
<td>SMR</td>
<td>- - - - -</td>
<td>- - - - -</td>
<td>- - - - -</td>
</tr>
<tr>
<td>Incremental Battery Storage(^{(2)})</td>
<td>320 70 660 1,050</td>
<td>390 900 910 2,200</td>
<td>1,890 310 - 2,200</td>
</tr>
<tr>
<td>Incremental Gas</td>
<td>460 5,340 3,800 9,600</td>
<td>460 4,750 2,140 7,350</td>
<td>460 8,240 900 9,600</td>
</tr>
<tr>
<td>Total</td>
<td>3,780 7,120 4,475 15,375</td>
<td>4,000 8,250 6,425 18,675</td>
<td>5,500 11,840 4,285 21,625</td>
</tr>
</tbody>
</table>

### 70% CO2 Reduction: High Wind

<table>
<thead>
<tr>
<th></th>
<th>Base without Carbon Policy</th>
<th>Base with Carbon Policy</th>
<th>Earliest Practicable Coal Retirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2021-2025 2026-2030 2031-2035 Total</td>
<td>2021-2025 2026-2030 2031-2035 Total</td>
<td>2021-2025 2026-2030 2031-2035 Total</td>
</tr>
<tr>
<td>Incremental Solar(^{(1)})</td>
<td>3,530 3,920 4,875 12,325</td>
<td>3,530 3,920 4,875 12,325</td>
<td>3,450 4,150 4,875 12,475</td>
</tr>
<tr>
<td>Onshore Wind</td>
<td>- 750 2,100 2,850</td>
<td>- 750 2,100 2,850</td>
<td>- 750 2,400 3,150</td>
</tr>
<tr>
<td>Offshore Wind</td>
<td>- 2,400 250 2,650</td>
<td>- - 250 250</td>
<td>- 2,400 250 2,650</td>
</tr>
<tr>
<td>SMR</td>
<td>- - - - -</td>
<td>- 1,350 - 1,350</td>
<td>- - 700 700</td>
</tr>
<tr>
<td>Incremental Battery Storage(^{(2)})</td>
<td>2,390 390 1,620 4,400</td>
<td>2,390 390 1,620 4,400</td>
<td>970 3,590 2,840 7,400</td>
</tr>
<tr>
<td>Incremental Gas</td>
<td>- 6,400 - 6,400</td>
<td>- 6,100 - 6,100</td>
<td>- - - -</td>
</tr>
<tr>
<td>Total</td>
<td>5,920 13,860 8,845 28,625</td>
<td>5,920 12,510 8,845 27,275</td>
<td>4,420 10,890 11,065 26,375</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Total solar nameplate capacity excludes 3,925 MW connect in DEC and DEP combined as of year-end 2020 (projected)

\(^{(2)}\) Includes 4-hr, 6-hr, and 8-hr grid-tied storage, storage at solar plus storage sites, and pumped storage
Duke Energy is an industry leader in ESG/Sustainability disclosure

Please see Duke Energy’s new ESG website…
www.duke-energy.com/esg

… with links to key disclosures
- Sustainability Report
- Climate Report
- Sustainability Accounting Standards Board (SASB)
- EEI and AGA Reporting
- Global Reporting Initiative (GRI)
- Proxy Statement

Carolinas IRP online screening tool(1)
https://screeningtool.duke-energy.com/

(1) This link should be opened in a chrome browser
Investor relations contact information

BRYAN BUCKLER, VICE PRESIDENT INVESTOR RELATIONS
  ▪ Bryan.Buckler@duke-energy.com
  ▪ (704) 382-2640

CINDY LEE, DIRECTOR INVESTOR RELATIONS
  ▪ Cynthia.Lee@duke-energy.com
  ▪ (980) 373-4077

ABBY MOTSINGER, MANAGER INVESTOR RELATIONS
  ▪ Abby.Motsinger@duke-energy.com
  ▪ (704) 382-7624
This document includes forward-looking statements within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Forward-looking statements are based on management's beliefs and assumptions and can often be identified by terms and phrases that include "anticipate," "believe," "intend," "estimate," "expect," "continue," "should," "could," "may," "plan," "project," "predict," "will," "potential," "forecast," "target," "guidance," "outlook" or other similar terminology. Various factors may cause actual results to be materially different than the suggested outcomes within forward-looking statements; accordingly, there is no assurance that such results will be realized. These factors include, but are not limited to: The impact of the COVID-19 pandemic; State, federal and foreign legislative and regulatory initiatives, including costs of compliance with existing and future environmental requirements, including those related to climate change, as well as rulings that affect cost and investment recovery or have an impact on rate structures or market prices; The extent and timing of costs and liabilities to comply with federal and state laws, regulations and legal requirements related to coal ash remediation, including amounts for required closure of certain ash impoundments, are uncertain and difficult to estimate; The ability to recover eligible costs, including amounts associated with coal ash impoundment retirement obligations and costs related to significant weather events, and to earn an adequate return on investment through rate case proceedings and the regulatory process; The costs of decommissioning nuclear facilities could prove to be more extensive than amounts estimated and all costs may not be fully recoverable through the regulatory process; Costs and effects of legal and administrative proceedings, settlements, investigations and claims; Industrial, commercial and residential growth or decline in service territories or customer bases resulting from sustained downturns of the economy and the economic health of our service territories or variations in customer usage patterns, including energy efficiency efforts and use of alternative energy sources, such as self-generation and distributed generation technologies; Federal and state regulations, laws and other efforts designed to promote and expand the use of energy efficiency measures and distributed generation technologies, such as private solar and battery storage, in Duke Energy service territories could result in customers leaving the electric distribution system, excess generation resources as well as stranded costs; Advancements in technology; Additional competition in electric and natural gas markets and continued industry consolidation; The influence of weather and other natural phenomena on operations, including the economic, operational and other effects of severe storms, hurricanes, droughts, earthquakes and tornadoes, including extreme weather associated with climate change; The ability to successfully operate electric generating facilities and deliver electricity to customers including direct or indirect effects to the company resulting from an incident that affects the U.S. electric grid or generating resources; The ability to obtain the necessary permits and approvals and to complete necessary or desirable pipeline expansion or infrastructure projects in our natural gas business; Operational interruptions to our natural gas distribution and transmission activities; The availability of adequate interstate pipeline transportation capacity and natural gas supply; The impact on facilities and business from a terrorist attack, cybersecurity threats, data security breaches, operational accidents, information technology failures or other catastrophic events, such as fires, explosions, pandemic health events or other similar occurrences; The inherent risks associated with the operation of nuclear facilities, including environmental, health, safety, regulatory and financial risks, including the financial stability of third-party service providers; The timing and extent of changes in commodity prices and interest rates and the ability to recover such costs through the regulatory process, where appropriate, and their impact on liquidity positions and the value of underlying assets; The results of financing efforts, including the ability to obtain financing on favorable terms, which can be affected by various factors, including credit ratings, interest rate fluctuations, compliance with debt covenants and conditions and general market and economic conditions; Credit ratings of the Duke Energy Registrants may be different from what is expected; Declines in the market prices of equity and fixed-income securities and resultant cash funding requirements for defined benefit pension plans, other post-retirement benefit plans and nuclear decommissioning trust funds; Construction and development risks associated with the completion of the Duke Energy Registrants' capital investment projects, including risks related to financing, obtaining and complying with terms of permits, meeting construction budgets and schedules and satisfying operating and environmental performance standards, as well as the ability to recover costs from customers in a timely manner, or at all; Changes in rules for regional transmission organizations, including changes in rate designs and new and evolving capacity markets, and risks related to obligations created by the default of other participants; The ability to control operation and maintenance costs; The level of creditworthiness of counterparties to transactions; The ability to obtain adequate insurance at acceptable costs; Employee workforce factors, including the potential inability to attract and retain key personnel; The ability of subsidiaries to pay dividends or distributions to Duke Energy Corporation holding company (the Parent); The performance of projects undertaken by our nonregulated businesses and the success of efforts to invest in and develop new opportunities; The effect of accounting pronouncements issued periodically by accounting standard-setting bodies; The impact of U.S. tax legislation to our financial condition, results of operations or cash flows and our credit ratings; The impacts from potential impairments of goodwill or equity method investment carrying values; and the ability to implement our business strategy, including enhancing existing technology systems.

Additional risks and uncertainties are identified and discussed in the Duke Energy Registrants' reports filed with the SEC and available at the SEC's website at sec.gov. In light of these risks, uncertainties and assumptions, the events described in the forward-looking statements might not occur or might occur to a different extent or at a different time than described. Forward-looking statements speak only as of the date they are made and the Duke Energy Registrants expressly disclaim an obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.
For additional information on Duke Energy, please visit duke-energy.com/investors
Adjusted Earnings per Share (EPS)

The materials for the 2020 ESG Investor Day include a discussion of adjusted EPS.

The non-GAAP financial measure, adjusted EPS, represents basic EPS available to Duke Energy Corporation common stockholders (GAAP reported EPS), adjusted for the per share impact of special items. Special items represent certain charges and credits, which management believes are not indicative of Duke Energy’s ongoing performance.

Management believes the presentation of adjusted EPS provides useful information to investors, as it provides them with an additional relevant comparison of Duke Energy’s performance across periods. Management uses this non-GAAP financial measure for planning and forecasting and for reporting financial results to the Duke Energy Board of Directors, employees, stockholders, analysts and investors. Adjusted EPS is also used as a basis for employee incentive bonuses. The most directly comparable GAAP measure for adjusted EPS is reported basic EPS available to Duke Energy Corporation common stockholders.

Adjusted EPS Guidance

The materials for the 2020 ESG Investor Day include a reference to the long-term range of annual growth of 4% - 6% off 2021 earnings. In addition, the materials reference the expected five-year EPS growth in the natural gas segment of 8-10% (on a compound annual growth rate (CAGR) basis). The forecasted adjusted EPS is a non-GAAP financial measure as it represents basic EPS available to Duke Energy Corporation common stockholders (GAAP reported EPS), adjusted for the per share impact of special items, as discussed above under Adjusted EPS. Due to the forward-looking nature of this non-GAAP financial measure for future periods, information to reconcile it to the most directly comparable GAAP financial measure is not available at this time, as management is unable to project all special items for future periods, such as legal settlements, the impact of regulatory orders or asset impairments.

Business Mix Percentage

The materials for the 2020 ESG Investor Day reference ninety-five percent of earnings coming from the regulated electric and gas utilities as a percentage of the total projected 2020 adjusted net income (i.e. business mix), excluding the impact of Other. Duke Energy’s regulated electric and gas utilities are included in the Electric Utilities and Infrastructure and Gas Utilities and Infrastructure segments, respectively.

Adjusted segment income (loss) is a non-GAAP financial measure, as it represents reported segment income (loss) adjusted for special items. Due to the forward-looking nature of any forecasted adjusted segment income (loss), information to reconcile this non-GAAP financial measure to the most directly comparable GAAP financial measure is not available at this time, as management is unable to project all special items, as discussed above under Adjusted EPS Guidance.